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1. Extended Abstract 
 
During the last decade, the electromagnetic properties in the microwave and optical ranges of artificial two-dimensional (2D) 
periodic dielectric or metallic structures, such as electromagnetic band-gap (EBG) structures and metamaterials, have been 
extensively studied both theoretically and experimentally. Moreover, EBG structures have been frequently employed as 
multifunctional and compact filters, frequency selective or polarization selective devices, and leaky-wave antennas (LWAs) 
[1, 2]. A periodic array of infinitely long parallel cylinders is a typical kind of discrete periodic system. When the array is 
multilayered, it constitutes 2D EBG structures in which any electromagnetic wave propagation is forbidden within a fairly large 
frequency range. The EBG waveguides can be made by removing one or more rows of the rods [2]. Knowledge of the real and 
complex propagation wavenumbers of bound and leaky modes supported by 2D EBG structures and waveguides is 
fundamental for the complete determination of both band-gap and radiative regions and for the understanding of the 
fundamental parameters governing the design. Therefore, the full-wave modal analysis for EBG waveguides composed by the 
multilayered arrays of 2D cylindrical inclusions is strictly required. 
 
Modal propagation in 2D EBG waveguides has been extensively investigated using various approaches such as finite-
difference time-domain method, the finite-difference frequency-domain method, plane-wave-expansion method [2]. These 
studies are concerned with the propagation features of guided modes, which are strongly confined in the guiding region of the 
band-gap structure and are characterized by purely real propagation wavenumbers [2]. However, different kinds of 
propagation regimes exist that are characterized by complex propagation wavenumbers. These are the cases of the stop-band 
regime, where the mode is still bound, but is purely reactive (no power leaks from the structure), and of the proper and 
improper leaky regimes, where the field confinement becomes weak and the modal field leaks out from the guiding region. 
The investigation of such leakage phenomena is of significant importance for the design of novel LWAs. 
 
In this paper, a rigorous and efficient full-wave numerical approach devoted to the modal analysis of 2D EBG waveguides is 
presented. The proposed technique allows for the numerical study of bound and leaky modes propagating in artificial periodic 
structures composed by 2D cylindrical inclusions. The adopted approach uses the T-matrix and the generalized reflection and 
transmission matrices to characterize the nature of the cylindrical scatterer and the layered periodic structure, respectively. In 
this context, the efficient and accurate computation of the Lattice Sums (LSs) is required. The LSs uniquely characterize a 
periodic arrangement of objects and are independent of the polarization of the incident field, observation points, and the 
individual configuration of the scatterers. A recently developed fast and accurate calculation method for the LSs in case of 
complex propagation wavenumbers is adopted here, which resorts to original higher-order spectral and spatial Ewald 
representations and allows for the correct spectral determination of each spatial harmonic constituting the leaky mode [3]. 
Real propagation wavenumbers for bound waves in their pass-band regimes and complex propagation wavenumbers for both 
bound modes in their stop-band regimes and proper and improper leaky modes have been efficiently derived for typical 
artificial 2D EBG waveguides composed of dielectric circular rods. The results of the current method have been then 
compared with those obtained by means of a well-established Fourier Series Expansion method (FSEM) combined with 
perfectly matched layers (PMLs). An excellent agreement has been observed in all cases, while the computation time of the 
proposed approach, based on the LSs, was in average about 1000 time faster than that of the PML-FSEM. 
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Motivation (1)

Goal: Derivation of the complex
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their stop-band regimes and leaky
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Motivation (2)

 The complex wavenumbers are found by applying a rigorous and efficient formulation
based on the Lattice Sums (LSs) technique combined with the Transition-matrix (T-matrix)
approach and the recursive algorithm for the multilayered structure [1-3].

 The method is highly efficient, since the LSs are evaluated by using an effective Ewald
approach [4] and a recursive relation for the layered structure is based on a simple matrix
multiplication [5].

The method allows for the appropriate choice of the spectral determination for each space
harmonic in order to consider both proper and improper modal solutions.

 Radiative features of EBG Fabry-Perot cavities excited by simple localized sources (line
or Hertzian dipole sources) at microwave and millimeter waves can be explained in terms of
the leaky modes supported by the relevant open waveguide [6].
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Formulation of the Problem (1)

0e xik x
0

2
xn x

nk k
h
π

= +e ,x nik x

Reflected fields ( 0)y >

( ) ( ) ( )( )( ) 1, e , ( )x n y ni T
n n n n

i k x k yr x y r a rψ + + −++ −= = ⋅ ⋅− ⋅ ⋅TI TLu p
( ) :nr
+ th incident wave0- th reflected waven-

x

y0e xik x e x nik xSingle array

Transition matrix 
(T-matrix)

Lattice Sums

T-matrix is obtained in a closed form
for cylindrical inclusions. It is a diagonal matrix. 

h



Formulation of the Problem (2)
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Formulation of the Problem (3)
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LSs for the complex wavenumber can be accurately calculated using Ewald method.
We calculate separately spectral and spatial series:



Lattice-Sum Ewald Spectral Series
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A recurrence relation in m have been obtained to significantly speed up the evaluation of
the integrals in the spatial Ewald series
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Formulation of the Problem (4)
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Spectral Properties of the Modal Solution
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Full-Wave Modal Analysis. Numerical Results

• For validation purposes, a Fourier Series 
Expansion method (FSEM) with perfectly 
matched layers (PMLs) has been 
implemented to analyze 2-D EBG 
waveguides composed by cylindrical 
inclusions, whose section can have an 
arbitrary geometry. 

• The electric and magnetic fields are 
approximated by truncated Fourier series.

• The FSEM uses the staircase approximation 
of the circular section by applying several 
multilayered thin rectangular strips.

• A substantial number of numerical tests are 
required to properly choose the PML 
parameters in order to distinguish the 
leakage loss from the material loss caused 
by the assumed conductivity in the PMLs.

D. Zhang and H. Jia, “Numerical analysis of
leaky modes in two-dimensional photonic
crystal waveguides using Fourier series
expansion method with perfectly matched
layer,” IEICE Transactions on Electronics,
vol. E90-C, pp. 613-622, 2007.

Fourier Series Expansion Method (FSEM) 
Combined with Perfectly Matched Layers (PMLs)



W1 Type EBG Waveguide: Improper Leaky Mode (1)  
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When the number of the EBG layers is 
increasing the attenuation constant  

substantially decreases.

The LST is more efficient than the FSEM with PML: 0.02 s against 20 s per 
one frequency point with the same 3.6 GHz Intel Core i7 with 8 GB RAM
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Lowest order TE leaky mode (Ez , Hx , Hy) 

n = 0 space harmonic is fast and has an 
improper determination in the LST

Results for 
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W1 Type EBG Waveguide: Improper Leaky Mode (2)  
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Conclusions
 A full-wave numerical approach for the analysis of modes with complex 

propagation wavenumber in periodic and bandgap structures composed of 
2D cylindrical inclusions has been proposed. 

 The method is based on the lattice sums (LSs) technique and has been 
suitably adapted to the analysis of modes with complex propagation 
wavenumbers, by applying higher-order Ewald representation, in terms of 
spectral and spatial series having Gaussian convergence.

 All the possible bound and leaky modes propagating along periodic and 
bandgap structures composed of 2D cylindrical inclusions can be 
considered.

 An exhaustive analysis of two reference 2D EBG waveguides has allowed 
us to characterize the relevant Pass-Band and Band-Gap Zones and the 
Radiative Regions.

Future works:

• Analysis of leakage and radiative phenomena in 2D EBG structures

• Design of filters and periodic Leaky Wave Antennas based on EBG structures
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