Compact Metamaterial based Coil-Element for Combined 1H/23Na MRI at 7 Tesla

Jan Taro Svejda, Andreas Rennings, and Daniel Erni

General and Theoretical Electrical Engineering (ATE), Faculty of Engineering
University of Duisburg-Essen, D-47048 Duisburg, Germany

The Metamaterial Transmission Line

- Composite right-/left-handed (CRLH) transmission line
- Enabled design of dispersion characteristics
The Utilized Unit Cell

- Augmented microstrip line:
 - Series MIM capacitor
 - Shunt coaxial stub line
 - Inductive impedance below quarter wavelength
 - Capacitive impedance above quarter wavelength

Dispersion Characteristics

- EC: α
- Sim.: α
- EC: β
- Sim.: β

OP of 1H

OP of 23Na
Simulation Results

- FDTD Simulation with EMPIRE-XPU
- Congeneric current and field distributions

Prototype within Housing

dual-tuned matching network
open circuit termination
short-circuit termination
polycarbonate housing
Setup of MRI Experiment

- **23Na TX/RX switch**
- **1H channel**
- **Diplexer**
- **BTSL phantom**
- **CDRA element with housing**

Results of MRI Experiment

3D gradient echo, T_1=50ms, T_2=2ms, 4.7mm slice thickness, Average of 4 samples in case of 23Na
Conclusion

- Prototype of dual-resonant coil-element proposed
 - For combined 1H/23Na MRI
 - Utilizing CRLH dispersion characteristics
- Similar field distributions at 79MHz and 298MHz
 - Good results with Hydrogen
 - Lower SNR in case of Sodium
 - Lower Concentration
 - Resistive losses in coil element
- Low coupling between elements
 - Reduction of losses in coil-element
 - Multichannel array arrangement

Thank you for your attention